skip to main content


Search for: All records

Creators/Authors contains: "Levy, Joseph"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2024
  2. Available soil moisture is thought to be the limiting factor for most ecosystem processes in the cold polar desert of the McMurdo Dry Valleys (MDVs) of Antarctica. Previous studies have shown that microfauna throughout the MDVs are capable of biological activity when sufficient soil moisture is available (~2–10% gravimetric water content), but few studies have attempted to quantify the distribution, abundance, and frequency of soil moisture on scales beyond that of traditional field work or local field investigations. In this study, we present our work to quantify the soil moisture content of soils throughout the Fryxell basin using multispectral satellite remote sensing techniques. Our efforts demonstrate that ecologically relevant abundances of liquid water are common across the landscape throughout the austral summer. On average, the Fryxell basin of Taylor Valley is modeled as containing 1.5 ± 0.5% gravimetric water content (GWC) across its non-fluvial landscape with ~23% of the landscape experiencing an average GWC > 2% throughout the study period, which is the observed limit of soil nematode activity. These results indicate that liquid water in the soils of the MDVs may be more abundant than previously thought, and that the distribution and availability of liquid water is dependent on both soil properties and the distribution of water sources. These results can also help to identify ecological hotspots in the harsh polar Antarctic environment and serve as a baseline for detecting future changes in the soil hydrological regime.

     
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  3. Abstract Outside of hydrologically wetted active layer soils and humidity-sensitive soil brines, low soil moisture is a limiting factor controlling biogeochemical processes in the McMurdo Dry Valleys. But anecdotal field observations suggest that episodic wetting and darkening of surface soils in the absence of snowmelt occurs during high humidity conditions. Here, I analyse long-term meteorological station data to determine whether soil-darkening episodes are present in the instrumental record and whether they are, in fact, correlated with relative humidity. A strong linear correlation is found between relative humidity and soil reflectance at the Lake Bonney long-term autonomous weather station. Soil reflectance is found to decrease annually by a median of 27.7% in response to high humidity conditions. This magnitude of darkening is consistent with soil moisture rising from typical background values of < 0.5 wt.% to 2–3 wt.%, suggesting that regional atmospheric processes may result in widespread soil moisture generation in otherwise dry surface soils. Temperature and relative humidity conditions under which darkening is observed occur for hundreds of hours per year, but are dominated by episodes occurring between midnight and 07h00 local time, suggesting that wetting events may be common, but are not widely observed during typical diel science operations. 
    more » « less
  4. null (Ed.)
    The extent, timing, and magnitude of soil moisture in wetlands (the hydropattern) is a primary physical control on biogeochemical processes in desert environments. However, determining playa hydropatterns is challenged by the remoteness of desert basin sites and by the difficulty in determining soil moisture from remotely sensed data at fine spatial and temporal scales (hundreds of meters to kilometers, and hours to days). Therefore, we developed a new, reflectance-based soil moisture index (continuum-removed water index, or CRWI) that can be determined via hyperspectral imaging from drone-borne platforms. We compared its efficacy at remotely determining soil moisture content to existing hyperspectral and multispectral soil moisture indices. CRWI varies linearly with in situ soil moisture content (R2 = 0.89, p < 0.001) and is comparatively insensitive to soil clay content (R2 = 0.4, p = 0.01), soil salinity (R2 = 0.82, p < 0.001), and soil grain size distribution (R2 = 0.67, p < 0.001). CRWI is negatively correlated with clay content, indicating it is not sensitive to hydrated mineral absorption features. CRWI has stronger correlation with surface soil moisture than other hyperspectral and multispectral indices (R2 = 0.69, p < 0.001 for WISOIL at this site). Drone-borne reflectance measurements allow monitoring of soil moisture conditions at the Alvord Desert playa test site over hectare-scale soil plots at measurement cadences of minutes to hours. CRWI measurements can be used to determine surface soil moisture at a range of desert sites to inform management decisions and to better reveal ecosystem processes in water-limited environments. 
    more » « less
  5. Zucconi, Laura (Ed.)
    Ice-free soils in the McMurdo Dry Valleys select for taxa able to cope with challenging environmental conditions, including extreme chemical water activity gradients, freeze-thaw cycling, desiccation, and solar radiation regimes. The low biotic complexity of Dry Valley soils makes them well suited to investigate environmental and spatial influences on bacterial community structure. Water tracks are annually wetted habitats in the cold-arid soils of Antarctica that form briefly each summer with moisture sourced from snow melt, ground ice thaw, and atmospheric deposition via deliquescence and vapor flow into brines. Compared to neighboring arid soils, water tracks are highly saline and relatively moist habitats. They represent a considerable area (∼5–10 km2) of the Dry Valley terrestrial ecosystem, an area that is expected to increase with ongoing climate change. The goal of this study was to determine how variation in the environmental conditions of water tracks influences the composition and diversity of microbial communities. We found significant differences in microbial community composition between on- and off-water track samples, and across two distinct locations. Of the tested environmental variables, soil salinity was the best predictor of community composition, with members of the Bacteroidetes phylum being relatively more abundant at higher salinities and the Actinobacteria phylum showing the opposite pattern. There was also a significant, inverse relationship between salinity and bacterial diversity. Our results suggest water track formation significantly alters dry soil microbial communities, likely influencing subsequent ecosystem functioning. We highlight how Dry Valley water tracks could be a useful model system for understanding the potential habitability of transiently wetted environments found on the surface of Mars. 
    more » « less
  6. The reflectance spectroscopic characteristics of cyanobacteria-dominated microbial mats in the McMurdo Dry Valleys (MDVs) were measured using a hyperspectral point spectrometer aboard an unmanned aerial system (remotely piloted aircraft system, unmanned aerial vehicle or drone) to determine whether mat presence, type and activity could be mapped at a spatial scale sufficient to characterize inter-annual change. Mats near Howard Glacier and Canada Glacier (ASPA 131) were mapped and mat samples were collected for DNA-based microbiome analysis. Although a broadband spectral parameter (a partial normalized difference vegetation index) identified mats, it missed mats in comparatively deep (> 10 cm) water or on bouldery surfaces where mats occupied fringing moats. A hyperspectral parameter (B6) did not have these shortcomings and recorded a larger dynamic range at both sites. When linked with colour orthomosaic data, B6 band strength is shown to be capable of characterizing the presence, type and activity of cyanobacteria-dominated mats in and around MDV streams. 16S rRNA gene polymerase chain reaction amplicon sequencing analysis of the mat samples revealed that dominant cyanobacterial taxa differed between spectrally distinguishable mats, indicating that spectral differences reflect underlying biological distinctiveness. Combined rapid-repeat hyperspectral measurements can be applied in order to monitor the distribution and activity of sentinel microbial ecosystems across the terrestrial Antarctic. 
    more » « less